6.773 en 100 zijn relatief prime... als:
- Als er geen ander getal is dan 1 dat beide getallen zonder rest deelt. Of...
- Of, met andere woorden, als hun grootste gemene deler, ggd, gelijk is aan 1.
Bereken de grootste gemene deler, ggd, van de getallen
Methode 1. De ontbinding in priemfactoren:
Het ontbinden in priemfactoren van een getal: de priemgetallen vinden die zich vermenigvuldigen om dat getal te maken.
6.773 = 13 × 521
6.773 is geen priemgetal, het is een samengesteld getal.
100 = 22 × 52
100 is geen priemgetal, het is een samengesteld getal.
- De getallen die alleen deelbaar zijn door 1 en zichzelf heten priemgetallen. Een priemgetal heeft slechts twee delers: 1 en zichzelf.
- Een samengesteld getal is een natuurlijk getal dat minstens één andere deler heeft dan 1 en zichzelf.
Bereken de grootste gemene deler, ggd:
Vermenigvuldig alle gemeenschappelijke priemfactoren van de twee getallen, genomen door hun kleinste exponenten (de kleinste machten).
Stap 1. Deel het grotere getal door het kleinere:
6.773 : 100 = 67 + 73
Stap 2. Deel het kleinere getal door de rest van de bovenstaande bewerking:
100 : 73 = 1 + 27
Stap 3. Deel de rest van stap 1 door de rest van stap 2:
73 : 27 = 2 + 19
Stap 4. Deel de rest van stap 2 door de rest van stap 3:
27 : 19 = 1 + 8
Stap 5. Deel de rest van stap 3 door de rest van stap 4:
19 : 8 = 2 + 3
Stap 6. Deel de rest van stap 4 door de rest van stap 5:
8 : 3 = 2 + 2
Stap 7. Deel de rest van stap 5 door de rest van stap 6:
3 : 2 = 1 + 1
Stap 8. Deel de rest van stap 6 door de rest van stap 7:
2 : 1 = 2 + 0
Bij deze stap is de rest nul, dus stoppen we:
1 is het getal waar we naar op zoek waren - de laatste niet-nul rest.
Dit is de grootste gemene deler.
ggd (6.773; 100) = 1
Zijn de getallen 6.773 en 100 relatief prime? Ja.
ggd (100; 6.773) = 1