47.537 en 12.071 zijn relatief prime... als:
- Als er geen ander getal is dan 1 dat beide getallen zonder rest deelt. Of...
- Of, met andere woorden, als hun grootste gemene deler, ggd, gelijk is aan 1.
Bereken de grootste gemene deler, ggd, van de getallen
Methode 1. De ontbinding in priemfactoren:
Het ontbinden in priemfactoren van een getal: de priemgetallen vinden die zich vermenigvuldigen om dat getal te maken.
47.537 = 7 × 6.791
47.537 is geen priemgetal, het is een samengesteld getal.
12.071 is een priemgetal, het kan niet worden ontbonden in andere priemfactoren.
- De getallen die alleen deelbaar zijn door 1 en zichzelf heten priemgetallen. Een priemgetal heeft slechts twee delers: 1 en zichzelf.
- Een samengesteld getal is een natuurlijk getal dat minstens één andere deler heeft dan 1 en zichzelf.
Bereken de grootste gemene deler, ggd:
Vermenigvuldig alle gemeenschappelijke priemfactoren van de twee getallen, genomen door hun kleinste exponenten (de kleinste machten).
Stap 1. Deel het grotere getal door het kleinere:
47.537 : 12.071 = 3 + 11.324
Stap 2. Deel het kleinere getal door de rest van de bovenstaande bewerking:
12.071 : 11.324 = 1 + 747
Stap 3. Deel de rest van stap 1 door de rest van stap 2:
11.324 : 747 = 15 + 119
Stap 4. Deel de rest van stap 2 door de rest van stap 3:
747 : 119 = 6 + 33
Stap 5. Deel de rest van stap 3 door de rest van stap 4:
119 : 33 = 3 + 20
Stap 6. Deel de rest van stap 4 door de rest van stap 5:
33 : 20 = 1 + 13
Stap 7. Deel de rest van stap 5 door de rest van stap 6:
20 : 13 = 1 + 7
Stap 8. Deel de rest van stap 6 door de rest van stap 7:
13 : 7 = 1 + 6
Stap 9. Deel de rest van stap 7 door de rest van stap 8:
7 : 6 = 1 + 1
Stap 10. Deel de rest van stap 8 door de rest van stap 9:
6 : 1 = 6 + 0
Bij deze stap is de rest nul, dus stoppen we:
1 is het getal waar we naar op zoek waren - de laatste niet-nul rest.
Dit is de grootste gemene deler.
ggd (47.537; 12.071) = 1
Zijn de getallen 47.537 en 12.071 relatief prime? Ja.
ggd (12.071; 47.537) = 1