3.524 en 816 zijn niet relatief priemgetal... als
- Als er minstens één ander getal is dan 1 dat de twee getallen zonder rest deelt. Of...
- Of, met andere woorden, als hun grootste gemene deler, ggd, niet gelijk is aan 1.
Bereken de grootste gemene deler, ggd, van de getallen
Methode 1. De ontbinding in priemfactoren:
Het ontbinden in priemfactoren van een getal: de priemgetallen vinden die zich vermenigvuldigen om dat getal te maken.
3.524 = 22 × 881
3.524 is geen priemgetal, het is een samengesteld getal.
816 = 24 × 3 × 17
816 is geen priemgetal, het is een samengesteld getal.
- De getallen die alleen deelbaar zijn door 1 en zichzelf heten priemgetallen. Een priemgetal heeft slechts twee delers: 1 en zichzelf.
- Een samengesteld getal is een natuurlijk getal dat minstens één andere deler heeft dan 1 en zichzelf.
Bereken de grootste gemene deler, ggd:
Vermenigvuldig alle gemeenschappelijke priemfactoren van de twee getallen, genomen door hun kleinste exponenten (de kleinste machten).
Stap 1. Deel het grotere getal door het kleinere:
3.524 : 816 = 4 + 260
Stap 2. Deel het kleinere getal door de rest van de bovenstaande bewerking:
816 : 260 = 3 + 36
Stap 3. Deel de rest van stap 1 door de rest van stap 2:
260 : 36 = 7 + 8
Stap 4. Deel de rest van stap 2 door de rest van stap 3:
36 : 8 = 4 + 4
Stap 5. Deel de rest van stap 3 door de rest van stap 4:
8 : 4 = 2 + 0
Bij deze stap is de rest nul, dus stoppen we:
4 is het getal waar we naar op zoek waren - de laatste niet-nul rest.
Dit is de grootste gemene deler.
ggd (3.524; 816) = 4 ≠ 1
Zijn de getallen 3.524 en 816 relatief prime? Nee.
ggd (816; 3.524) = 4 ≠ 1