Bereken en tel alle gemeenschappelijke delers van 1.331 en 343. Online calculator

De gemene delers van de getallen 1.331 en 343?

De gemene delers van de getallen 1.331 and 343 zijn allemaal delers van hun 'grootste gemene deler', ggd


Bereken de grootste gemene deler.
Volg de twee onderstaande stappen.

1. Bepaal de ontbinding in priemfactoren van de twee getallen:

Het ontbinden in priemfactoren van een getal: de priemgetallen vinden die zich vermenigvuldigen om dat getal te maken.


1.331 = 113
1.331 is geen priemgetal maar een samengesteld getal.


343 = 73
343 is geen priemgetal maar een samengesteld getal.



* De natuurlijke getallen die alleen deelbaar zijn door 1 en zichzelf, worden priemgetallen genoemd. Een priemgetal heeft precies twee delers: 1 en zichzelf.
* Een samengesteld getal is een natuurlijk getal dat minstens één andere deler heeft dan 1 en zichzelf.



2. Bereken de grootste gemene deler, ggd:

Vermenigvuldig alle gemeenschappelijke priemfactoren, genomen door hun kleinste exponenten (de kleinste machten).
Maar de twee getallen hebben geen gemeenschappelijke priemfactoren.


ggd (1.331; 343) = 1
Relatief priemgetallen;




1 is alleen deelbaar door zichzelf. Het getal 1 heeft slechts één deler: 1.

1.331 en 343 hebben 1 gemene deler:

noch priem noch samengesteld = 1

1.331 en 343 hebben 1 gemene deler: 1
Relatief priemgetallen

Delers, gemene delers, de grootste gemene deler, ggd

  • Als het getal "t" een deler is van het getal "a" dan komen we bij het ontbinden in priemfactoren van "t" alleen priemfactoren tegen die ook voorkomen bij het ontbinden in priemfactoren van "a".
  • Als er exponenten bij betrokken zijn, is de maximale waarde van een exponent voor elk grondtal van een macht die wordt gevonden bij het ontbinden in priemfactoren van "t" maximaal gelijk aan de exponent van hetzelfde grondtal dat betrokken is bij het ontbinden in priemfactoren van "a".
  • Tip: 23 = 2 × 2 × 2 = 8. 2 wordt het grondtal genoemd en 3 is de exponent. 23 is het vermogen en 8 is de waarde van het vermogen. 23 = we zeggen 2 tot de derde macht.
  • Bijvoorbeeld 12 is een deler van 120 - de rest is nul bij het delen van 120 door 12.
  • Laten we eens kijken naar het ontbinden in priemfactoren van beide getallen en let op de bases en de exponenten:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 bevat alle priemfactoren van 12, en alle exponenten van de bases zijn hoger dan die van 12.
  • Als "t" een gemene deler is van "a" en "b", dan bevat de ontbinding in priemfactoren van "t" alleen de gemeenschappelijke priemfactoren die betrokken zijn bij de ontbinding van zowel "a" als "b" ".
  • Als er exponenten bij betrokken zijn, is de maximale waarde van een exponent voor elk grondtal van een macht die wordt gevonden in de ontbinding in priemfactoren van "t" hoogstens gelijk aan het minimum van de exponenten van hetzelfde grondtal dat betrokken is bij de ontbinden in priemfactoren van zowel "a" als "b".
  • Bijvoorbeeld: 12 is de gemene deler van 48 en 360.
  • De rest is nul bij het delen van 48 of 360 door 12.
  • Hier zijn de ontbindingen in priemgetallen van de drie getallen, 12, 48 en 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Houd er rekening mee dat 48 en 360 meer delers hebben: 2, 3, 4, 6, 8, 12, 24. Onder hen is 24 de grootste gemene deler, ggd, van 48 en 360.
  • De grootste gemene deler, ggd, van twee getallen, "a" en "b", is het product van alle gemeenschappelijke priemfactoren die betrokken zijn bij het ontbinden in priemfactoren van zowel "a" als "b ", genomen door de laagste exponenten.
  • Op basis van deze regel wordt de grootste gemene deler, ggd, van meerdere getallen berekend, zoals in onderstaand voorbeeld...
  • ggd (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3,024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • De gemeenschappelijke priemfactoren zijn:
  • 2 - de laagste exponent is: min.(2; 3; 4) = 2
  • 3 - de laagste exponent is: min.(2; 2; 2) = 2
  • ggd (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Relatief priemgetallen:
  • Als twee getallen "a" en "b" geen andere gemene deler hebben dan 1, ggd (a; b) = 1, dan worden de getallen "a" en "b" relatief priem genoemd.
  • Delers van de ggd
  • Als "a" en "b" geen relatief priemgetal zijn, dan is elke gemene deler van "a" en "b" ook een deler van de grootste gemene deler, ggd, van "a" en "b".