ggd (6.711; 9.644) = ? Bereken de grootste gemene deler van getallen, ggd, op twee manieren: 1) Ontbinding in priemfactoren en 2) Het Euclidische algoritme

ggd (6.711; 9.644) = ?

Methode 1. De ontbinding in priemfactoren:

Het ontbinden in priemfactoren van een getal: de priemgetallen vinden die zich vermenigvuldigen om dat getal te maken.


6.711 = 3 × 2.237
6.711 is geen priemgetal maar een samengesteld geta.


9.644 = 22 × 2.411
9.644 is geen priemgetal maar een samengesteld geta.


» Onlinecalculator. Controleer of een getal een priemgetal is of niet. De ontbinding van samengestelde getallen in priemfactoren

* De natuurlijke getallen die alleen deelbaar zijn door 1 en zichzelf heten priemgetallen. Een priemgetal heeft precies twee delers: 1 en zichzelf.
* Een samengesteld getal is een natuurlijk getal dat ten minste één andere factor heeft dan 1 en zichzelf.


Bereken de grootste gemene deler:

Vermenigvuldig alle gemeenschappelijke priemfactoren, genomen door hun kleinste machten (krijg alleen de priemgetallen met de kleinste exponenten).


Maar de twee getallen hebben geen gemeenschappelijke priemfactoren.


De grootste gemene deler,
ggd (6.711; 9.644) = 1
Relatief priemgetallen.
Scroll naar beneden voor de 2e methode...

Methode 2. Het Euclidische algoritme:

Dit algoritme omvat het delen van getallen en het berekenen van de restanten.


'a' en 'b' zijn de twee natuurlijke getallen, 'a' >= 'b'.


Deel 'a' door 'b' en verkrijg de rest van de bewerking, 'r'.


Als 'r' = 0, STOP. 'b' = de ggd van 'a' en 'b'.


Anders: Vervang ('a' door 'b') en ('b' door 'r'). Keer terug naar de stap hierboven.




Stap 1. Deel het grotere getal door het kleinere:
9.644 : 6.711 = 1 + 2.933
Stap 2. Deel het kleinere getal door de rest van de bovenstaande bewerking:
6.711 : 2.933 = 2 + 845
Stap 3. Deel de rest van stap 1 door de rest van stap 2:
2.933 : 845 = 3 + 398
Stap 4. Deel de rest van stap 2 door de rest van stap 3:
845 : 398 = 2 + 49
Stap 5. Deel de rest van stap 3 door de rest van stap 4:
398 : 49 = 8 + 6
Stap 6. Deel de rest van stap 4 door de rest van stap 5:
49 : 6 = 8 + 1
Stap 7. Deel de rest van stap 5 door de rest van stap 6:
6 : 1 = 6 + 0
Bij deze stap is de rest nul, dus stoppen we:
1 is het getal waar we naar op zoek waren - de laatste niet-nul rest.
Dit is de grootste gemene deler.


De grootste gemene deler:
ggd (6.711; 9.644) = 1
Relatief priemgetallen.
De twee getallen hebben geen priemfactoren gemeen

Waarom moeten we de grootste gemene deler berekenen?

Als je eenmaal de grootste gemene deler van de teller en de noemer van een breuk hebt berekend, wordt het veel gemakkelijker om de breuk te vereenvoudigen tot de kleinst mogelijke teller en noemer, tot de eenvoudigste equivalente vorm.


Rekenmachine van de grootste gemene deler, ggd

Bereken de grootste gemene deler van getallen, ggd:

Methode 1: Voer de ontbinding van de getallen uit in de priemfactoren - vermenigvuldig vervolgens alle gemeenschappelijke priemfactoren (eventueel genomen door hun kleinste exponenten). Als er geen gemeenschappelijke priemfactoren zijn, dan is ggd gelijk aan 1.

Methode 2: het Euclidische algoritme.

Methode 3: De deelbaarheid van de getallen.

De grootste gemene deler, ggd: de laatste 10 berekende waarden

De grootste gemene deler, ggd. Wat het is en hoe het te berekenen.

  • Opmerking: Het ontbinden in priemfactoren van een getal: de priemgetallen vinden die zich vermenigvuldigen om dat getal te maken.
  • Stel dat wanneer het getal "t" het getal "a" deelt, de rest nul is.
  • Als we kijken naar de ontbinding in priemfactoren van "a" en "t", vinden we dat:
  • 1) alle priemfactoren van "t" zijn ook priemfactoren van "a" en
  • and
  • 2) de exponenten van de priemfactoren van "t" zijn gelijk aan of kleiner dan de exponenten van de priemfactoren van "a" (zie de * opmerking hieronder)
  • Het getal 12 is bijvoorbeeld een deler van het getal 60:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 60 = 2 × 2 × 3 × 5 = 22 × 3 × 5
  • * Opmerking: 23 = 2 × 2 × 2 = 8. We zeggen 2 tot de derde macht. In dit voorbeeld is 3 de exponent en 2 het grondtal. De exponent geeft aan hoe vaak het grondtal met zichzelf wordt vermenigvuldigd. 23 is het vermogen en 8 is de waarde van het vermogen.
  • Als het getal "t" een gemene deler is van de getallen "a" en "b", dan:
  • 1) "t" heeft alleen de priemfactoren die ook ingrijpen in de priemontbinding van "a" en "b".
  • and
  • 2) elke priemfactor van "t" heeft de kleinste exponenten ten opzichte van de priemfactoren van de getallen "a" en "b".
  • Het getal 12 is bijvoorbeeld de gemene deler van de getallen 48 en 360. Hieronder vindt u hun ontbinding in priemfactoren:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Je ziet dat het getal 12 alleen de priemfactoren heeft die ook voorkomen bij het ontbinden in priemfactoren van de getallen 48 en 360.
  • Je kunt hierboven zien dat de getallen 48 en 360 verschillende gemeenschappelijke delers hebben: 2, 3, 4, 6, 8, 12, 24. Hiervan is 24 de grootste gemene deler (ggd) van 48 en 360.
  • 24 = 2 × 2 × 2 × 3 = 23 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • 24, de grootste gemene deler van de getallen 48 en 360, wordt berekend als het product van alle gemeenschappelijke priemfactoren van de twee getallen, genomen door de kleinste exponenten (de kleinste machten).
  • Als twee getallen "a" en "b" geen andere gemene deler dan 1 hebben, ggd (a, b) = 1, dan worden de getallen "a" en "b" relatief priemgetal genoemd.
  • Als "a" en "b" geen relatief priemgetal zijn, dan is elke gemene deler van "a" en "b" een deler van de grootste gemene deler van "a" en "b".
  • Laten we een voorbeeld bekijken voor het berekenen van de grootste gemene deler, ggd, van de volgende getallen:
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • ggd (1.260, 3.024, 5.544) = 22 × 32 = 252
  • En nog een voorbeeld:
  • 900 = 22 × 32 × 52
  • 270 = 2 × 33 × 5
  • 210 = 2 × 3 × 5 × 7
  • ggd (900, 270, 210) = 2 × 3 × 5 = 30
  • En nog een voorbeeld:
  • 90 = 2 × 32 × 5
  • 27 = 33
  • 22 = 2 × 11
  • ggd (90, 27, 22) = 1 - De drie getallen hebben geen priemfactoren gemeen, ze zijn relatief priemgetallen.