ggd (10; 5.965) = ? Bereken de grootste gemene deler van getallen, ggd, op twee manieren: 1) Ontbinding in priemfactoren en 2) Het Euclidische algoritme
ggd (10; 5.965) = ?
Methode 1. De ontbinding in priemfactoren:
Het ontbinden in priemfactoren van een getal: de priemgetallen vinden die zich vermenigvuldigen om dat getal te maken.
10 = 2 × 5
10 is geen priemgetal maar een samengesteld geta.
5.965 = 5 × 1.193
5.965 is geen priemgetal maar een samengesteld geta.
* De natuurlijke getallen die alleen deelbaar zijn door 1 en zichzelf heten priemgetallen. Een priemgetal heeft precies twee delers: 1 en zichzelf.
* Een samengesteld getal is een natuurlijk getal dat ten minste één andere factor heeft dan 1 en zichzelf.
Bereken de grootste gemene deler:
Vermenigvuldig alle gemeenschappelijke priemfactoren, genomen door hun kleinste machten (krijg alleen de priemgetallen met de kleinste exponenten).
De grootste gemene deler,
ggd (10; 5.965) = 5
De twee getallen hebben gemeenschappelijke priemfactoren.
Scroll naar beneden voor de 2e methode...
Methode 2. Het Euclidische algoritme:
Dit algoritme omvat het delen van getallen en het berekenen van de restanten.
'a' en 'b' zijn de twee natuurlijke getallen, 'a' >= 'b'.
Deel 'a' door 'b' en verkrijg de rest van de bewerking, 'r'.
Als 'r' = 0, STOP. 'b' = de ggd van 'a' en 'b'.
Anders: Vervang ('a' door 'b') en ('b' door 'r'). Keer terug naar de stap hierboven.
Stap 1. Deel het grotere getal door het kleinere:
5.965 : 10 = 596 + 5
Stap 2. Deel het kleinere getal door de rest van de bovenstaande bewerking:
10 : 5 = 2 + 0
Bij deze stap is de rest nul, dus stoppen we:
5 is het getal waar we naar op zoek waren - de laatste niet-nul rest.
Dit is de grootste gemene deler.
De grootste gemene deler:
ggd (10; 5.965) = 5
De twee getallen hebben gemeenschappelijke priemfactoren
Waarom moeten we de grootste gemene deler berekenen?
Als je eenmaal de grootste gemene deler van de teller en de noemer van een breuk hebt berekend, wordt het veel gemakkelijker om de breuk te vereenvoudigen tot de kleinst mogelijke teller en noemer, tot de eenvoudigste equivalente vorm.
Andere vergelijkbare bewerkingen met de grootste gemene deler:
Rekenmachine van de grootste gemene deler, ggd
Bereken de grootste gemene deler van getallen, ggd:
Methode 1: Voer de ontbinding van de getallen uit in de priemfactoren - vermenigvuldig vervolgens alle gemeenschappelijke priemfactoren (eventueel genomen door hun kleinste exponenten). Als er geen gemeenschappelijke priemfactoren zijn, dan is ggd gelijk aan 1.
Methode 2: het Euclidische algoritme.
Methode 3: De deelbaarheid van de getallen.